Directionally Sensitive Multivariate Control Charts in Practice: Application to Biosurveillance
نویسندگان
چکیده
Multivariate control charts are used for monitoring multiple series simultaneously, for the purpose of detecting shifts in the mean vector in any direction. In the context of disease outbreak detection, interest is in detecting only an increase in the process means. Two practical approaches for deriving directional Hotelling charts are Follmann’s correction and Testik and Runger’s quadratic programming. However, there has not been an extensive comparison of their practical performance. Moreover, in practice many of the underlying method assumptions are often violated and the theoretically-guaranteed performance might not hold. In this work we compare the two directionally-sensitive approaches: a statistically-based approach and an operations research solution. We evaluate Hotelling charts as well as two extensions to multivariate EWMA charts. We examine practical performance aspects such as robustness to often impractical assumptions, the amount of data required for proper performance, and computational aspects. We perform a large simulation study and examine performance on authentic biosurveillance data.
منابع مشابه
Mann - Withney multivariate nonparametric control chart.
In many quality control applications, the necessary distributional assumptions to correctly apply the traditional parametric control charts are either not met or there is simply not enough information or evidence to verify the assumptions. It is well known that performance of many parametric control charts can be seriously degraded in situations like this. Thus, control charts that do not requi...
متن کاملApplication of Multivariate Control Charts for Condition Based Maintenance
Condition monitoring is the foundation of a condition based maintenance (CBM). To relate the information obtained from the condition monitoring to the actual state of the system, it is usually required a stochastic model. On the other hand, considering the interactions and similarities that exist between CBM and statistical process control (SPC), the integrated models for CBM and SPC have been ...
متن کاملOn the non-parametric multivariate control charts in fuzzy environment
Multivariate control chats are generally used in situations where the simultaneous monitoring or control of two or more related quality characteristics is necessary. In most processes in the real world, distribution of the process characteristics are unknown or at least non-normal, so the non-parametric or distribution-free charts are desirable. Most non-parametric statistical process-control t...
متن کاملApplication Of Univariate And Multivariate Process Control Procedures In Industry
Traditional statistical process control charts used to monitor key process variables are based on the assumption that measurements are independent and identically distributed about a target value. In practice they are not and often are actually correlated. Reliance on univariate charts can lead to misleading conclusions. This paper addresses the methods for improving the quality of industrial p...
متن کاملA New Bootstrap Based Algorithm for Hotelling’s T2 Multivariate Control Chart
Normality is a common assumption for many quality control charts. One should expect misleading results once this assumption is violated. In order to avoid this pitfall, we need to evaluate this assumption prior to the use of control charts which require normality assumption. However, in certain cases either this assumption is overlooked or it is hard to check. Robust control charts and bootstra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quality and Reliability Eng. Int.
دوره 30 شماره
صفحات -
تاریخ انتشار 2014